NASA TECHNICAL NOTE

NASA TN D-2090

AERODYNAMIC AND CONTROL-SYSTEM CONTRIBUTIONS TO THE X-15 AIRPLANE LANDING-GEAR LOADS

by Richard B. Noll, Calvin R. Jarvis, Chris Pembo, Wilton P. Lock, and Betty J. Scott

Flight Research Center

Edwards, California

REPRODUCED BY
NATIONAL TECHNICAL
INFORMATION SERVICE
U. S. DEPARTMENT OF COMMERCE
SPRINGFIELD VA 22161

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION - WASHINGTON, D.C. - OCTOBER 1963

TECHNICAL NOTE D-2090

AERODYNAMIC AND CONTROL-SYSTEM CONTRIBUTIONS TO THE
X-15 AIRPLANE LANDING-GEAR LOADS

By Richard B. Noll, Calvin R. Jarvis, Chris Pembo, Wilton P. Lock, and Betty J. Scott

Flight Research Center Edwards, Calif.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-2090

AERODYNAMIC AND CONTROL-SYSTEM CONTRIBUTIONS TO THE

X-15 AIRPLANE LANDING-GEAR LOADS

By Richard B. Noll, Calvin R. Jarvis, Chris Pembo, Wilton P. Lock, and Betty J. Scott

SUMMARY

Landing loads on the X-15 research airplane were investigated to determine the effects of the aerodynamic loads on the main-gear loads and of control-system inputs on the horizontal-tail aerodynamic loads. Study of the landing data indicated that conventional control-system inputs increase the down loads on the horizontal tail, which results in additional loads on the main gear. The following two methods were devised which effectively reduced the horizontal-tail deflections and the resulting landing-gear loads at touchdown: (1) automatically disengaging the stability augmentation system at main-gear touchdown and (2) reducing pilot inputs after main-gear touchdown. The data further indicate that landing without using flaps results in a down load on the wing during the second reaction, thus increasing the main-gear loads.

A review of the main-gear loads shows that the gear is satisfactory for typical landings but the loads may be excessive if the negative attitude of the airplane after nose-gear touchdown is increased.

INTRODUCTION

The X-15 airplane, unlike conventional aircraft, experiences a second reaction on the main gear at landing that is much more severe than the initial impact reaction. This is attributed to a combination of several factors: (1) the location of the main gear far rearward of the center of gravity and directly under the horizontal tail (ref. 1) so that aerodynamic down loads on the tail are transmitted to the main gear, (2) the uncontrolled pitch rotation about the main gear which abruptly reduces the wing lift, and (3) the high inertial loads of the airplane as it rotates back onto the main gear after nose-gear touchdown.

On several X-15 landings, the main-gear load has approached the ultimate limit. Previous studies of the landing dynamics of the aircraft (refs. 2 and 3) indicated that the severity of the main-gear second reaction could be reduced by minimizing the aerodynamic down loads on the horizontal tail after touchdown.

In order to assess the effects of the aerodynamic factors that contribute to the main-gear loads on the X-15 airplane, main-gear, horizontal-tail, and wing loads were measured during landings of the airplane. The control-system contribution to the aerodynamic loads on the horizontal tail during landings was also investigated. The results of these investigations are presented and discussed in this paper. Methods for reducing the loads are described, and data are presented from landings in which these methods were used.

SYMBOLS

$\mathbf{F}_{\mathtt{S}}$	main-gear shock-strut force, lb
\mathbf{F}_{t}	horizontal-tail aerodynamic load, lb
${\mathtt F}_{\mathtt V}$	main-gear vertical ground reaction, 1b
K	SAS gain, surface deflection per rate input, deg/deg/sec
$\mathbf{L}_{\mathbf{W}}$	wing aerodynamic load, lb
đ	pitching velocity, deg/sec
ā	dynamic pressure, lb/sq ft
Δt_n	time interval between initial main-gear contact and nose-gear contact, sec
V	indicated airspeed, knots
α	angle of attack, deg
$\delta_{ m h}$	total horizontal-stabilizer deflection, positive when leading edge up, deg
$^{\delta_{ ext{h}}}$ pilot	horizontal-stabilizer deflection resulting from pilot command, deg
⁸ hsas	horizontal-stabilizer deflection commanded by the stability augmentation system, deg
θ	pitch-attitude angle, deg

AIRPLANE

The X-15 airplane and landing-gear system are described in detail in reference 3; physical characteristics are presented in table I. Briefly, the vehicle (figs. 1 and 2) is a rocket-powered research aircraft equipped with a landing-gear system consisting of a non-steerable full-castering nose gear located well forward of the airplane center of gravity and skid-type main gear

located well to the rear under the tail. The unusual nature of the skid-type gear is shown by the sketch of the main gear in figure 3. The wing is equipped with conventional landing flaps.

The basic X-15 aerodynamic control system (ref. 4) is an irreversible hydraulic system. The horizontal control surfaces deflect asymmetrically for roll control and symmetrically for pitch control. Directional control is provided by upper and lower vertical stabilizers consisting of a fixed and a movable portion. All aerodynamic control surfaces are actuated by hydraulic actuators which are mechanically linked to the pilot's control stick. The horizontal surfaces are rate-limited at 26 degrees per second.

A stability augmentation system (SAS) was incorporated to improve the handling qualities of the basic airplane. A representative block diagram of the damping system and corresponding components is shown in figure 4. A detailed description of an X-15 stability augmentation system and its operating characteristics are presented in references 4 and 5. Basically, the system provides increased damping about all three airplane axes by sensing the rate of rotation about each axis and deflecting the control surfaces to produce a damping moment. The pilot and SAS commands are summed in a mechanical walking-beam arrangement to command the surface-actuator response. At any given instant the total surface deflection is the sum of pilot commands and augmentation-system commands, if the surfaces are not rate-limited.

INSTRUMENTATION AND DATA REDUCTION

The following pertinent quantities were recorded on NASA internal recording instruments which were synchronized by a common timer:

Airspeed
Angle of attack
Pitch attitude
Pitch rate
Main-gear shock-strut force
Horizontal-tail position
Horizontal-tail aerodynamic load
Wing aerodynamic load
Longitudinal control-stick position
SAS servo displacement

Airspeed and angle-of-attack data were obtained from the X-15 flow-direction sensor in the nose of the aircraft. Pitch rate, which ranged from -28 degrees per second to 28 degrees per second, was obtained by use of a rate gyro. The positions of the control surface, control stick, and SAS servo were measured by potentiometers.

The strain gages on the main-gear bellcrank arms were calibrated to yield the axial load on the shock-strut cylinder (fig. 3). The strain gages on the left and right horizontal-tail spindles and on the right wing spars and skin were calibrated to measure shear, bending moment, and torque at the root station of

the respective surfaces. The loads on the surfaces were obtained by the method discussed in reference 6. A detailed description of the X-15 landing-gear instrumentation is given in reference 3.

To record the quantities being measured, standard galvanometer recording instruments were used which were synchronized at 0.1-second intervals to a common timer. The natural frequency and damping ratio of the recorders were 20 cps and 0.64, respectively. The natural frequencies of the gyro sensors were greater than 20 cps. Recordings were accurate within ± 2 percent of the full-scale readings.

The horizontal-tail and wing loads were calculated by using wind-tunnel aerodynamic data which were presented as the variation of lift coefficient with angle of attack for flaps and gear up and for flaps and gear down in the presence of the ground plane. The X-15 angle of attack measured by airborne instruments is unreliable during landing; therefore, the measured airplane pitch-attitude angle is used.

RESULTS AND DISCUSSION

To determine the effect of the aerodynamic loads and the control-system contribution to the main-gear landing loads, 77 landings of the X-15 aircraft were reviewed. Similar piloting techniques were used on all of these landings; however, one landing was made without flaps as the result of a system malfunction. Because of insufficient data and similarity of landing conditions, not all of the investigated landings are discussed.

The X-15 landing approach is made at an indicated airspeed of approximately 300 knots. Immediately preceding the flare for touchdown, the flaps and gear are lowered. The touchdown occurs at an average airspeed of 188 knots with a sink rate of approximately 4 fps.

A summary of measured quantities from the landings is presented in tables II and III. Included are the maximum quantities for the first main-gear reaction and second main-gear reaction, as well as pretouchdown conditions including weight and sinking speed.

X-15 Landing Sequence

The influence of the main-gear location on the landing loads is shown by the schematic sketches of figure 5. Figure 5(a) indicates the down load on the main gear at touchdown produced by inertia and the negative horizontal-tail deflection required for landing. After the initial touchdown the airplane pitches down rapidly, since the horizontal tail, which is located over the main gear, offers no restraint on the rotation. As the airplane rotates onto the nose gear to a negative attitude, the down load on the horizontal tail is increased further and the lift on the wing is decreased (figs. 5(b) to 5(d)). In addition, inputs from the pilot and the stability augmentation system during the rotation onto the nose gear result in an increased horizontal-tail down load. Thus, the increased down load on the tail and the reduced up load on the wing, in

combination with high inertial forces as the airplane rotates back onto the main gear after nose-gear impact (fig. 5(e)), result in a main-gear second reaction more severe than the reaction experienced during the initial touchdown.

Control-System Contribution to Horizontal-Tail Loads

The main-gear second reaction is shown for a typical landing in figure 6. A typical landing is one in which the down load on the horizontal tail increases to a maximum during nose-gear impact and the wing lift with flaps decreases abruptly as the airplane rotates onto the nose gear. The peak at 0.4 second indicates the first reaction of the main gear, which is caused primarily by the inertial loads at touchdown. The severity of the main-gear second reaction (maximum peak) is attributed to the combined loading conditions noted previously.

Immediately before touchdown, the pilot commands a leading-edge-down horizontal-surface deflection of 5.5° to maintain the desired angle of attack. Immediately following skid contact, the nose-down pitch rate is sensed by the SAS gyro which commands a surface deflection to oppose the pitch rate. Also, as the aircraft rotates downward, the pilot instinctively pulls back on the control stick in an attempt to reduce the nose-gear impact velocity.

The technique used to land the X-15 has little or no effect on the pitch rotation because of the relative locations of the main gear, the center of gravity, and the horizontal-stabilizer center of pressure. No moment about the airplane center of gravity is produced by deflecting the horizontal surfaces after the main gear is on the ground. The only significant result is the addition of a load on the main gear as a result of the downward-acting aerodynamic tail load.

The maximum surface deflection of -20° occurs approximately at nose-gear impact. Of this 20°, 16° was applied after main-gear touchdown. The maximum SAS command of 13° occurs at nose-gear impact. The surface deflection commanded by the pilot at nose-gear contact is approximately 10°. Because the surface actuator is functioning at its rate limit for a short period just prior to nose-gear touchdown, the total maximum surface deflection commanded by the pilot and the SAS is not obtained.

The maximum horizontal-stabilizer surface deflections from several X-15 landings are presented in figure 7. The surface deflection is shown as a function of the SAS gain and maximum pitch rate. The difference between the measured and the calculated data is an indication of pilot contribution to the horizontal-stabilizer deflections during the landings. The general trend of high surface deflection for correspondingly high SAS gains and pitch rates is apparent.

Figure 8 shows the relationship between the horizontal-stabilizer deflection and the resulting aerodynamic loading. These data represent the maximum value of aerodynamic loading on the horizontal tail at nose-gear touchdown. The calculations were made by using X-15 wind-tunnel data for the aircraft in a landing configuration (flaps and gear lowered in the presence of the ground plane). An angle of attack of 0° was used to conform with nose-gear touchdown.

As expected, the tail load increases with stabilizer deflection. By removing the surface deflections which occur after main-gear touchdown, the ratio of horizontal-tail load to dynamic pressure $\frac{F_t}{\bar{a}}$ could be reduced to about 35.

The maximum total load on the main landing gear could be reduced if the controlsystem inputs causing the undesirable deflections were minimized.

Methods for Reducing Control-System Effects

The following two methods of reducing the control-system inputs during the landing were investigated:

- (1) Automatically disengaging the stability augmentation system at maingear touchdown.
- (2) Avoiding or reversing the normal direction of the longitudinal control inputs by the pilot after initial touchdown.

A high-gain landing of the X-15 aircraft was made during which the pilot was instructed to push forward on the control stick immediately after main-gear contact. The stability augmentation system was also mechanized to automatically disengage at main-gear touchdown. The results of this landing are presented in figure 9. The tail load at initial touchdown is approximately the same as that required for a typical landing (fig. 6). During rotation following initial touchdown, the down load on the tail increased as in a typical landing. For this landing (fig. 9), the third peak in the shock-strut load is the main-gear second reaction. The airplane touched the ground lightly, skipped, and then achieved a solid touchdown, which resulted in two peaks in the initial touchdown data.

The stability augmentation system automatically disengaged at approximately 0.8 second after main-gear touchdown. Thus, there were no inputs from the system at the time of nose-gear impact. The data show that, immediately after main-gear touchdown, the pilot instinctively pulled back before he pushed forward on the control stick. He did, however, move the control stick forward fast enough so that the horizontal stabilizer reached a leading-edge-up deflection at nose-gear impact. Following nose-gear impact, the horizontal-tail load became an up load which decreased the main-gear second reaction to 34,700 pounds, compared with 43,300 pounds for a typical landing.

The upward component of aerodynamic load on the horizontal stabilizer after nose-gear impact was sufficiently large, combined with the stored energy in the compressed gear system, to momentarily lift the main gear off the ground. Although the main-gear lift-off was undesirable during this phase of the landing, the results showed that this method could reduce the tail loads.

On a subsequent landing, the pilot was requested to release the control stick following main-gear contact rather than to push forward. The results of this landing are presented in figure 10(a). The pilot inadvertently pulled back on the control stick before releasing it; thus, the surface deflection was not

neutralized before nose-gear impact. The total surface deflection was, however, appreciably lower than is normal at nose-gear touchdown. On this landing, the stability augmentation system was automatically disengaged shortly after maingear touchdown and the input to the horizontal surfaces was zero at nose-gear impact. The total surface deflection at nose-gear touchdown was only -4.5°, or approximately the same as before touchdown. This reduction is significant in comparison to the -20° deflection for the landing shown in figure 6. The maximum main-gear load for this flight is 36,000 pounds, compared to 43,300 pounds for a typical flight.

Figure 10(b) is a time history of a landing in which the pilot released the control stick at main-gear touchdown. The stability augmentation system was automatically disengaged, and very little input was made by the pilot after main-gear touchdown. The tail load was approximately 2,000 pounds less than the tail loads experienced at nose-gear touchdown in the typical landing shown in figure 6. This landing technique resulted in maximum main-gear loads of 35,500 pounds.

Data from these two landings (figs. 10(a) and 10(b)) show that gear loads can be lowered by reducing control-system inputs immediately following main-gear touchdown.

Effect of Wing Loads

Landing without the use of flaps decreases the angle of zero lift, which results in negative lift in the nose-down attitude; the increased landing speed associated with a no-flaps landing further increases the down loads on the wing. These two factors result in a net increase in main-gear load, which can be seen by comparing the data of figures 6 and 11. The wing lift for the no-flaps landing (fig. 11) followed a trend similar to that of a typical landing with flaps (fig. 6). The lift at touchdown, which is affected by the touchdown conditions (table III), is approximately the same for the two landings. The wing lift then decreases as the airplane rotates onto the nose gear. However, the wing lift for the no-flaps landing became a down load after nose-gear touchdown; whereas, the lift for the typical, or flaps landing, remained an up load. The down load on the wing for the no-flaps landing contributed to an increase in the main-gear second reaction, as indicated by a comparison of the shock-strut force of 66,500 pounds in figure 11 with that of 43,300 pounds in figure 6. The landing data after the time of maximum main-gear load are unreliable in figure 11, inasmuch as the ultimate load of the main gear was exceeded. It should be noted that the effect of wing lift on the main-gear load cannot be seen directly, since magnitudes and rates of increase of tail load were not identical.

Wing loads at maximum main-gear load are shown as a function of touchdown velocity in figure 12. The measured data are within an area bounded by the calculated curves for $\alpha=0^\circ$ and $\alpha=-4^\circ$, which are representative of the X-15 airplane attitude at maximum main-gear load. Thus, the lift with flaps at maximum main-gear loads produces an up load which increases with velocity; whereas, a down load results if flaps are not used. If the attitude angle is decreased from -4° to -6° (as it would be if the lengths of the main-gear struts were increased), a wing down load results which would cause a more severe load

on the main gear than experienced on the present configuration. For this attitude, the landing loads for a no-flaps condition would exceed the present landing-gear structural limits.

Main-Gear Loads

Maximum main-gear loads (second reaction) are shown as a function of touch-down velocity in figure 13 for 16 landings. The sum of the calculated tail and wing loads for these flights is presented for comparison. Also shown is the ultimate load for the present X-15 main gear. The main-gear loads for typical landings vary between 7,500 pounds and 10,200 pounds (open circles). For many landings, the main-gear loads approach the ultimate limit. The landing made without flaps (solid symbols) caused a negative lift on the wing at nose-gear impact. This, together with a large down load on the horizontal tail, resulted in a main-gear load of at least 11,500 pounds, which exceeded the main-gear ultimate load. The landings made with flaps (flagged circles) in which the control inputs were reduced resulted in the lowest main-gear loads experienced with the airplane. These reduced loads verify the importance of decreasing the aerodynamic forces affecting the landing-gear loads.

CONCLUSIONS

Landing loads on the X-15 research airplane were investigated to determine the effects of the aerodynamic loads on the main-gear loads and of control-system inputs on the horizontal-tail aerodynamic loads. The results of this investigation show that:

- 1. Conventional control-system inputs and resulting horizontal-tail loads which occurred after main-gear touchdown produced additional loads on the main landing gear.
- 2. The aerodynamic loading on the horizontal-tail surfaces was minimized by (a) automatically disengaging the stability augmentation system as the main gear came in contact with the ground and (b) minimizing the pilot's control input after main-gear touchdown.
- 3. When these revised landing methods were used, the maximum main-gear load was significantly reduced.
- 4. The main gear was satisfactory for landings in which flaps were used; however, loads were experienced that approached the main-gear ultimate load. Landing without flaps decreased the wing lift, thus greatly increasing the main-gear loads.
- 5. Any geometric change which increases the negative pitch attitude after nose-gear touchdown will result in increased main-gear loads which may exceed the present structural limits of the X-15 main gear.

Flight Research Center,

National Aeronautics and Space Administration, Edwards, Calif., August 5, 1963.

REFERENCES

- 1. Houbolt, John C., and Batterson, Sidney A.: Some Landing Studies Pertinent to Glider-Reentry Vehicles. NASA TN D-448, 1960.
- 2. McKay, James M., and Kordes, Eldon E.: Landing Loads and Dynamics of the X-15 Airplane. NASA TM X-639, 1962.
- 3. McKay, James M., and Scott, Betty J.: Landing-Gear Behavior During Touchdown and Runout for 17 Landings of the X-15 Research Airplane. NASA TM X-518, 1961.
- 4. Tremant, Robert A.: Operational Experiences and Characteristics of the X-15 Flight Control System. NASA TN D-1402, 1962.
- 5. Taylor, Lawrence W., Jr., and Merrick, George B.: X-15 Airplane Stability Augmentation System. NASA TN D-1157, 1962.
- 6. Skopinski, T. H., Aiken, William S., Jr., and Huston, Wilber B.: Calibration of Strain-Gage Installations in Aircraft Structures for the Measurement of Flight Loads. NACA TN 2993, 1953.

TABLE I.- PHYSICAL CHARACTERISTICS OF THE X-15 AIRPLANE

Wing:	
Airfoil section	•
Total area (includes 94.98 sq ft covered by fuselage), sq ft	200
Mean aerodynamic chord, ft	22.36 10.27
Root chord, ft	14.91
Tip chord, ft	2.98
Taper ratio	0.20
Aspect ratio	2.50
Sweep at 25-percent-chord line, deg	25.64
Incidence, deg	0
Dihedral, deg	0
Aerodynamic twist, deg	0
Flap -	
Type	Plain
Area (each), sq ft	8.30 4.50
Span (each), ft	2.61
Outboard chord, ft	1.08
Original	Present
Deflection, down (nominal design), deg	32
Ratio flap chord to wing chord	0.22
Ratio total flap area to wing area	0.08
Ratio flap span to wing semispan	0.40
Trailing-edge angle, deg	5.67
Sweepback angle of hinge line, deg	0
Horizontal tail: Airfoil section	odified) 115.34 18.08
Mean aerodynamic chord, ft	7.05
Root chord, ft	10.22
Tip chord, ft	2.11
Taper ratio	0.21
Aspect ratio	2.83
Sweep at 25-percent-chord line, deg	45 - 15
Dihedral, deg	0.58
Movable surface area, sq ft	51.77
Deflection -	2#•11
Longitudinal, up, deg	15
Longitudinal, down, deg	35
Lateral differential (pilot authority), deg	±15
Lateral differential (autopilot authority), deg	±30
Control system Irreversible hydraulic boost with artific	ial feel
Upper vertical tail:	
Airfoil section	40.91 4.58 8.95 10.21
Tip chord, ft	7.56 0.74
Taper rauto	
Aspect ratio	
Aspect ratio	0.74 0.51 23.41

TABLE I.- PHYSICAL CHARACTERISTICS OF THE X-15 AIRPLANE - Concluded

Ratio vertical-tail area to wing area	
regard to the strong of the st	0.20
	6.45
Deflection, deg	7.50
Sweepback of hinge line, deg	0
Control system Irreversible hydraulic boost with artificial	feel
Lower vertical tail:	
Airfoil section	edge
Total area, sq ft	4.41
Span, ft	3.83
Mean aerodynamic chord, ft	9.17
	0.21
noot enord, it	8
	0.78
-wp with the transfer of t	
	0.43
	3.41
#-#	0.17
	9.95
	7.50
Dwccpbdch of hinge fine, deg	0
Control system Irreversible hydraulic boost with artificial	feel
Fuselage:	
	9.17
Maximum width, ft	7.33
Maximum depth, ft	4.67
Maximum depth over canopy, ft	4.97
Side area (total), sq ft	5.66
Fineness ratio	0.91
rineness ratio	
Main landing gear:	
Type Two (6 in. wide, 3 ft long)	1
	Klas
Shock strut	age)
Shock strut Oleopneumatic (inside fuse	age)
Shock strut	age)
Shock strut	age) sent ,200 3.58 7.34
Shock strut	age) sent ,200 3.58 7.34
Shock strut	age) sent ,200 3.58 7.34 VII 4.4
Shock strut	age) sent ,200 3.58 7.34 VII 4.4
Shock strut	age) sent ,200 3.58 7.34 VII 4.4 8
Shock strut	age) sent ,200 3.58 7.34 VII 4.4 8 8 ting
Shock strut	age) sent ,200 3.58 7.34 VII 4.4 8 8 ting 185
Shock strut	age) sent ,200 3.58 7.34 VII 4.4 8 8 ting 185 atic
Shock strut	age) sent ,200 3.58 7.34 VII 4.4 8 8 ting 185 atic 184
Shock strut	age) sent ,200 3.58 7.34 VII 4.4 8 8 ting 185 atic
Shock strut	age) sent ,200 3.58 7.34 VII 4.4 8 8 ting 185 atic 184
Shock strut	age) sent ,200 3.58 7.34 VII 4.4 8 8 ting 185 atic 184 18
Shock strut	age) sent ,200 3.58 7.34 VII 4.4 8 8 ting 185 atic 184
Shock strut	age) sent ,200 3.58 7.34 VII 4.4 8 8 ting 185 atic 184 18
Shock strut	age) sent ,200 3.58 7.34 VII 4.4 8 8 ting 185 atic 184 18
Shock strut	age) sent ,200 3.58 7.34 VII 4.4 8 8ting 185 atic 184 18
Shock strut	age) sent ,200 3.58 7.34 VII 4.4 8 8 ting 185 atic 184 18

TABLE II. - SUMMARY OF TEST CONDITIONS AND MEASURED FORCES

(X-15-1)

	vity cent mic									
	Center-of-gravity position, percent mean aerodynamic		17.4 18.4	18.4				17.7	15.8 14.6 17.9	16.9 17.0 17.0 17.2 17.2
	Shock-strut pressure, psi	Right	750 750 1,200 1,200 1,200 1,200	1,200 1,200	, 4 d d d d d d d d d d d d d d d d d d	000,1	1,200	88888	1,200	1,200 1,200 1,200 1,200 1,200
	Shock- press	Left	1,200 1,200 1,200 1,200	4 4 4 4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1,288	000,11	, 200 1, 200 1, 200	000000	1,200 1,200 1,200	1,200 1,200 1,200 1,200 1,200
	Horizontal- tail load, lb (down)		1 :	1,156 1,156 1,230 792						
	Maximum main- gear tread, ft		9.48 8.51 8.83	7.69 7.69 8.71	7.45 8.04	88.30 8.90.56 8.03.80	8.65	- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	7.76 9.1 8.32	9.02 8.01 7.44 7.45 7.97
	Maximum shock-strut deflection, in.	Right	1.91	11. 31. 18.			1.20	1.23		
reaction.	Maximum shock-st deflection, in.	Left	1.35	.18 .10 1.26	92.	٠: . 1: 58.	1.30	1.59		
First main-gear reaction	Maximum shock- strut force, lb	Right	9,710	5,957 6,079 1,455	6,814 7,262	8,038 7,834 11,138 7,956	6,650 9,000 6,120	9,384 8,201 11,098		9,943 6,767 5,862 5,772 5,320
First	Maximu strut	Left	9,579	6,203 7,866 9,368	7,880 7,680	7,891 7,512 11,225 8,060	7,174 8,000 5,992	8,904 6,288 11,225	13,542	12,387 5,714 5,062 5,491 5,478 6,026
	ntal al .tion,	Center of gravity	9.0	òùċ-	ţν̈́ω	ν̈÷οίν	ળં∞ં∓ં	0 vi = vi	6	2.
	Incremental vertical acceleration,	Right	7.00	7.80 H			4.60	8004	S.	
		Left	0.7	v.4.∞;≃	9.9		w.r.i.	α ώα ή	4 W	1.6 6.6 7.
	Time of main-landing- gear impact,	Right	0.03	٩. ٥. ٤.		g. 8.	009	000	.05	10. 10. 10. 10. 10. 10. 10. 10. 10. 10.
		Left	00000	00000	000	0000	ç. 600	.025.0	000	00000
	Vertical velocity, fps		040 V.		. i.	టాఞా భట బ్బాబ్బ్	01440 rivino	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 N W W N N W W	3.0 2.0 3.0 8.8
	Landing weight,									14,5/4 14,921 14,924 14,371 14,573 14,721
	Flight number	(a)	1-2-7	1-6-11	1-10-19	1-12-23 1-13-25 1-14-27 1-15-28	1-16-29	1-19-36 1-20-35 1-21-36 1-22-37 1-23-39	1-24-40	1-28-49 1-29-50 1-30-51 1-32-53 1-32-53

See footnotes at end of table, page 17.

TABLE II.- SUMMARY OF TEST CONDITIONS AND MEASURED FORCES - Continued

(x-15-1)

	Runout distance, ft		4,760 6,531 4,714	68688888888888888888888888888888888888
	Distance from main- gear to nose-gear	ft.	187 194 266	13.27 13.27 13.27 13.37 13
•	Pitching velocity at nose-gear touchdown,	radians/sec (down)	0.445 .300 .323 .350	888 888 888 888 888 888 888 888 888 88
	Nose-gear shock-strut pressure,	1	184 184 190 190	88888888888888888888888888888888888888
	Maximum horizontal- tall load, lb (down)		5,523 5,012 4,19	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
	Maximum main- gear tread, ft		10.04 10.35 10.29	00100000000000000000000000000000000000
eaction	-strut in.	Nose	16.74 15.34	경구권 3.333333377 2338887 독등장 분국 강원왕 온상왕역 왕각888
Second main-gear reaction	Maximum shock-strut deflection, in.	Right	3.10	6.89 0 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
nd main		Left	3.18	9. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.
Seco	Maximum shock-strut force, lb	Right	47,818 34,884	33, 087 50, 229 50, 229 50, 33, 33 50, 33, 33 50, 50, 50 50,
	Maximum sl forc	left	46,800 41,736	36,538 36,538 37,506,54 37,506,54 37,506,54 37,506,54 37,506,54 37,506,54 37,506,54 38,506
	n,	Center of gravity	4.S	
	Incremental vertical acceleration &	Nose	7.3 9.8 10.4	VOOOS ON VLO WA WO VATU AVOOTO VOO VOO VOO VOO VATU VO WATER SERSION ON THE SERSION OF THE SERSI
	Inc. ve. acce.	Right	4.8 3.4	0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		Left	1.6	rowavera engline a amakere rowavera engline a conserve
	Time of nose-gear impact, sec		0.58 .39	
	Nose-gear vertical velocity, fps			4. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.
	Flight	(g)	1-1-5 1-2-7 1-3-8 1-4-9	1-5-10 1-5-10 1-6-1-10 1-10-10

See footnotes at end of table, page 17.

TABLE II.- SUMMARY OF TEST CONDITIONS AND MEASURED FORCES - Continued

(X-15-2)

	Center-of-gravity position, percent mean aerodynamic chord			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	17.3	19.3	19.1	19.4	19.3	18.9	15:1	V. a.	20.01) - 4L	12.2	14.6	12.7	12.6	13.7	14.8	13.6	7.5.5	15.9	2.5.3	16.0	z·ór	16.0	15.9	17.0	7.77	0.01
	Shock-strut pressure, psi (b)	Right	925	1,140	1,200	98,7					_		200						_	_										36	4,500
	Shock pres	Left	925	1,160	1,200	288	1,200	1,200	1,200	1,200	1,200	2,500	36	2,500	1,200	1,200	1,200	1,200	1,200	1,200	1,200	300	300,	3,4	1,200	1,200	1,200	2,58	3,5	36	~,,t
	Horizontal- tail load, lb (down)		1,097	626	1,664	1,639	1,102	1,132	1,399								1 1 1 1 1 1 1 1 1 1 1					-								740 017	dn ot
	Maximum main- gear tread, ft		04.7	7.85	8.79	0,00 0,00 0,00		67. <u>7</u>	а. 8.	8.09	8.69	o.50	8 35	38.	8.26	7.70	8.80	ó°-2	9.76	7.60	6.5		00.0)+·0	7.53	5,53	2.68	7.67	α α	(3.0	
u	Maximum shock-strut deflection, in.	Right	60.35	.62	1.58	20.0	т. ф.	.15	77.	.52	ķ.				1.34										-						
First main-gear reaction	Maximum shock-st deflection, in.	Left	ξή·ο }	65.	1.68	9.5	まま	01.	1.12	83	1.23	70.1	÷		1.51	.61	1.49	•53	09.	,1.	1.35						1	-	-	1	
st main-ge	Maximum shock- strut force, lb	Right	13,607	19,500	26,700	20°034	7,139	5,975	7,566	6,140	α, 769	0,441	0.40 0.40		8,458	8,186		6,286	6,518	3,686	100	2,302	4,030	(3,935)	4,030	3,463	6,528	10,088	4,04	77,17	23,000
Fir	Maximu strut	Left	(8,985	21,500	26,300	200	6,960	5,122	8,133	960	9,110	0,763	, « 0, % 0, %	(2262	7,234	8,641		5,709	6,412	5,435		4 (t	8	400	ν, 8 1	7,7	6,219	, 99,	7,781	270,75	20,900
	ntal al tion,	Center of gravity	0.3	φ.	4.1	φ, ο	i				٠. -	† (i, n		9.	r.	9.	Q.	.	۲.	0	1	oğ ı	٠.	٠,	 .	۲.	1.1	Z.T		· •
	Incremental vertical acceleration,	Right			<u> </u>	on on ru						<u> </u>	·	-		i	′ '	<i>-</i> ‡.		_					1	1		!		-	
	<u></u>	Left	6.6	1.9	9.0	0.0		.ω.	1.3	<u>.</u>			-				٠ <u>.</u>	ċ	÷	··	<u>;</u>	<u> </u>		· U		_			0 0 N		_
	Time of main-landing gear impact,	Right	90.0	•03	.00.	50.4	91.	8	-07	ė.	.078	26.0	5.5		.020	.283	0	.12	01.	٥.		-	O) ·		> 	51.	0 ;	0.0		>
		Left	,o	0	0	0		0	0	0	0 0	<u> </u>) c	0	0	0	.10	0	0	0 (၁ ဇ	9.8	5.0	5.		٠. -	0 9	8.	•	ک د	3
	Vertical velocity, fps		0.0	7.7	.6,	ه س د مر	2.0	25.5	ω. ζ.	- 1	0	ֆ լ Ն լ		0	3.7	2.3	5.0	2.8	2.5	0.0	4.0	0.0		÷ •	χ.	۲•۵	٠. د.	લ લ		÷ °	٥.
	Landing weight, lb		13,984	14,165	15,183	٠ ا ا	14,619	14,394	14,583	14,469	14,419	14,480	14,30	14,741	24,447	14,567	14,845	14,610	14,654	14,692	T#,600	14,071	26,41	200	14,980	15,091	15,021	14,983	15,102	14,73	70,705
	r t	(g)	2-1-3	5-2-6	2-3-9	2-4-11	2-6-13	2-7-15	2-8-16	2-6-18	2-10-21	22-11-2	2-12-23	2-14-28	2-15-29	2-16-31	2-17-33	2-18-34	2-19-35	2-20-36	2-21-37	Z-ZZ-40	2-23-43	44-44	2-22-15	2-20-40	2-27-47	2-52-42	2-29-50	2-30-71	Z-34-72

See footnotes at end of table, page 17.

TABLE II. - SUMMARY OF TEST CONDITIONS AND MEASURED FORCES - Continued

(X-15-2)

	Runout distance, ft	:	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	Distance from main- gear to nose-gear	touchdown, ft	\$
		drag drag (d)	9,870 8,580 8,430 15,040 15,369
	Maximum nose- gear reaction, lb	Vertical of	1 1 4 0 0 0 4 4 N 0 C 0 0 1 1 1 1 1 1 1 1
	ge ag		254 27 28 28 28 28 28 28 28 28 28 28 28 28 28
	Pitching velocity at nose-gear touchdown.	radians/sec (down)	で 8
	Nose-gear shock-strut pressure,	Į gg	ක්ස්ත්ර් දිගිරිස්ත්ත්ත්ත්ත්ත්ත්ත්ත්ත්ත්ත්ත්ත්ත්ත්ත්ත්ත
	Maximum horizontal- tail load, lb (down)		4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
action	Maximum main- gear tread, ft	-	9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.
Second main-gear reaction	-strut in.	Nose	8887126888888888888888888888888888888888
d main-	Maximum shock-strut deflection, in.	Right	იოფლიოოიფლი გ.უ.ქ. 8 წ. 2 ქ. 4 გ. 2 გ. 8 გ. 8
Secon	Maximu defl	t E	00000000000000000000000000000000000000
	Maximum shock-strut force, lb	Right	23, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26
	Maximum sl force	Left	5,500 8,500
	1, ,,	Center of gravity	umayyyy y dayum damuqadadamadamad m momoru o oowii iiidaaaadamaaidaooii o
	Incremental vertical acceleration,	Nose	27-7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
	Incr ver accel	Right	04-1010 1 101-11 000000
		le ft	
	Time of nose-gear	(condition	& \$\frac{1}{2}\pi \cdot
	a d y	fps	23333765763434 63234444548544 3166666666664844 68466525466616
	F11ght number	(a)	2-1-3 2-4-11-3

See footnotes at end of table, page 17.

TABLE II. - SUMMARY OF TEST CONDITIONS AND MEASURED FORCES - Continued

(x-15-3)

	Center-of-gravity position, percent mean serodynamic chord		6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50
	Shock-strut pressure, psi (b)	Right	1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200
	Shock pres J	Left	1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200
	Horizontal- tail load, lb (down)		1, 762 5,991 5,069
	Maximum main- gear tread, ft		7.57 7.87 9.72 9.30 8.16 9.52 9.52
uc	Maximum shock-strut deflection, in.	Right	
First main-gear reaction	Maximum shock-st deflection, in. (e)	Left	
st main-ge	Maximum shock- strut force, lb	Right	6,344 3,976 6,617 6,617 2,252 6,782 7,783 7,783 6,910 6,910
Fir	Maximu strut	Left	6,912 8,112 8,702 6,075 1,615 1,618 5,686 5,688 5,688 5,688 5,688
	ntal al tion,	Center of gravity	8. (1.1.9. s. 1.1.9. s. 1.
	Incremental vertical acceleration,	Right	Γ.
		Left	a 40000000-40
	Thme of main-landing gear impact,	Right	00.000 00.000 00.000 00.000 00.000
		Left	61. 00.00080.40.00
	Vertical velocity, fps		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	Landing weight, lb		11, 303 11, 303 11, 303 11, 503 11, 503 11, 402 11, 402 11, 402 11, 402 11, 402 11, 402 11, 402 11, 402 11, 402
	Flight	(a)	3-1-2 3-2-3 3-2-3 3-2-3 3-5-10 3-6-10 3-11-2 3-11-2 3-11-2 3-11-2 3-11-2 3-12-22

See footnotes at end of table, page 17.

TABLE II. SUMMARY OF TEST CONDITIONS AND MEASURED FORCES - Concluded

(x-15-3)

	Runout distance, ft		6,200 6,340 6,450	5,104 5,280 5,280 5,280 7,280 7,286	1,937
	Distance from main- gear to nose-gear	ft ft	384 319 365	198 865 180 180 198 198 198 198 198 198 198	525
	Pitching velocity at nose- gear touchdown,	radians/sec (down)	0.238	#£6.60 10.00	(63:
	Nose-gear shock-strut pressure,	Ted.	184 184 184	**************************************	101
	Maximum horizontal- tail load, lb (down)			6,939 6,601 1,331 1,331 1,7754	6616
	Maximum main-horizontal gear tread, 1b (down)		10.16 9.90 10.26	10.14 10.03 10.08 10.03 10.33 10.33 10.33 10.33	7.4
ion	strut In.	Nose			
r react	ximum shock-str deflection, in.	Right			
ain-gea	Maximum shock-strut deflection, in. (e)	Left			
Second main-gear reaction	strut	Right	44,406 45,461	40,147 40,553 38,988 40,425 40,426 40,426 33,903 33,640 33,640	1000
	Maximum shock-s force, lb	Left	16,671 36,872	1, 12, 12, 12, 12, 12, 12, 12, 12, 12, 1	1 05 6 7 1
	η,	Center of gravity	2.3 2.3	0.000000000000000000000000000000000000	?
	Incremental vertical acceleration	Nose	6.2 9.1	12.0 12.0 12.0 12.0 11.7 11.7	
	Inc. ve.	Right	5.0		
		Left	2.3	0.00 1 1 1 4 1 % 0.00 1 2 0 1 0 0 0	:
	Time of nose-gear impact, sec		1.16	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	
	Nose-gear vertical velocity, fps		9.3 10.2	9 8 5 8 11 5 9 11 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
	Flight number	(a)	3-1-2 3-2-3 3-3-7	3.4.8 - 3.5.9 3.5.9 3.5.9 3.5.9 3.5.9 3.5.9 3.5.9 3.5.9 3.5.9 3.10.19 3.10.20	+

Print term indicates X-15 airplane by number; second term indicates number of free flights for that airplane; third term indicates number of airplane X-15/B-52 missions for the airplane.

bserviced to ±10 psi.

CInitial contact followed by rebound.

dIncremental drag force.

eNot measured on X-15-3.

TABLE III.- PRETOUCHDOWN CONDITIONS

(X-15-1)

_																										
	Center-of-gravity acceleration, g	1.40	1.20		01 1	e:: 6:	1.0	8.	5 %.		1.0	1.16	66.	6,8,		S.&.	69.	.89	1.03	68.	1	.63	1.14	8,8;		3
F	rlap angle, deg	38.0 38.0	41.9	42.3	ກີ ຜູ້ ບໍ່ກ	28.7	29.6		29.1	29.7	29.1	1.4.0		8, 82 8, 83 8, 83	-	4.00	30.0		29.63	9.75			27.8	i	4.40	2**2
	Sideslip angle, deg	0.7 (left) .7 (right)	1.6 (left)	.1 (right)	(10f+)	.94 (right)	.32 (left)	1.70 (right)	1.25 (right) 2.77 (right)		0	.20 (right)	(6 Tat) (C.	.90 (right)	(+0-1) 00	1.60 (left)	1.50 (left)	.50 (right)	2.80 (right)	.7 (left)		.15 (right)	.2 (left)	2.5 (right) 1.8 (right)		T.S (Figur)
1100	velocity, radians/sec	0.091 (right) .012 (right)	(left)	.005 (left)	OGO (right)	.066 (right)	.019 (left)	(right)	(right)	(left)	.037 (right)	-0-	(207.)	.035 (right)	(1000)	.020 (fight)	(right)	.003 (left)	.060 (right)	1		left)	(right)	(right) (left)	.015 (right)	
40+20	y,	(down)	(down)	.022 (up)	(4.1	.018 (down)	(dn) 840.		.005 (dup)	(dn) 550.	.012 (up)		() I.co.	.005 (dw)	(11)		(dn) 200.	_	.023 (down)	-000 (down)		.053 (up)		.002 (up) .012 (up)		-
Tradiostos	50	8.5	۲.4	7.0	7.1	5.0	7.7	7.3	5.7	7.0	 	0.4		4.4	α	13.1	10.0	7.7	11.7	6.2		1	8.9	7.4	α	
Runway	Condition				Dry, hard	Dry, hard	Dry, hard	Dry, hard	Dry, hard	Dry, hard	Dry, hard			Damp, hard		Dry, hard	Damp, hard	Damp, hard	Damp, hard	Dry, rough	Dry, hard			Dry, hard	Dry, hard	
Run	Magnetic heading, deg	350 180	350	350	205	180	180	180	180	180	180 350	320) (5,8	984	180	180	180	180	Mud Lake	Landing~ 180	180	180	38,	180	201
True ground	speed at touchdown, knots	168 168	აჭ. ზე	184	26.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18	18/	190	190	202	188	5 6 6	191	}	182	0.00	187	13.	213		205		176	187	361	1145	7+7
Vertical		2.0 4.8	6.5	0.4		1.0	4.5	0.0	0.0	. s.	4 r.	, w «) l	٠٠. ن٠٠	2°.0	, 0	5.5	ċ	2.5	5.5	3.8		0.0		φo	0
Velocity at		153 189	214	174 087	189	193	173	185	8.87	181	88	182		176	010	183) 96.7	504			190		187	8.8	210 161	†
Wind conditions	Direction	West	Southwest	+000004	North	West-	southwest North-	South	uanoe	Southwest	East	F + 1 = 1	northeast	North	East contb	Northeast	Southwest	North- northeast		East	Southwest	1 1 1 1 1 1		courravest		
Wind co	Velocity, knots	Calm ^b Calm	12	Calm A	Cal _m	23	19	2.	Calm	Celm	Call	Calm) [Calm	٦ .	2	,21,	Calm	Calm	<u></u>	ω	Calm	Calm	Calm	Call	3
Landing	weight,	13,324 13,988	14,564	14,641	14.033	14,790	14,444	14,838	14,41	14,758	14,859	14,670	100 11	14,559	14,586	12,11	15,015	14,997	14,658	15,515	14,500	14,574	16,44 18,44	14,371	14,573	11, 121
	Pilot	A A	щ	ပော	9 0	щ	b	дο	Ω د	D	A A	ES F	, p	4 0		0	А	±4	щ	А	Д	ф	jeų β	ម ២ ខ	ם פ	>
	Flight number (a)	1-1-5 1-2-7	1-3-8	1-4-9	1-6-11	1-7-12	1-8-13	71-9-1	1-10-19	1-12-23	1-13-25	1-15-28	2 2	-16-31	1-19-32	-1-1-36	1-22-37	1-23-39	1-24-40	1-25-44	94-98-1	1-27-48	1-28-49	1-30-51	1-31-52	

See footnotes at end of table, page 20.

TABLE III. - PRETOUCHDOWN CONDITIONS - Continued

(x-15-2)

Exercise Part Market M																						_			_			
Plot State Wind constitutes Wind constitute	Center-of-gravity		1.15	1.08		1.25	1.25	1.05	8.	1.10	1.09	55.	1.08		8.	1.05		1.03	1.03		8.8	1.8	59:1	8.	1.05	8.5	: :	1.02
Plot	Flap angle,	deg	23.2	37.6	· · ·	32.0	33.8	31.5	27.2	26.5	29.7	27.1	26.8		27.1	28.7	29.5	31.4	31.6	32.1	38.7	29.7	30.00	30:4:	29.1	8,8 6,9	30.0	0
PLOK State Wind Conditions Wilsolfton Wilsolf	Sideslip	angle, deg		.49 (left) 3.2 (left)		1.2 (left) .44 (left)	1.5	.1 (right)	.15 (right)	.50 (right)	.2 (right)	(n tat) 6.				5.35 (left)	1.6 (left)	2.35 (left)	2.25 (left)	.2 (right)	1.2 (left)	- 1 -						_
Plot telegration Plot telegrate Pl	Roll velocity.	radians/sec	0.013 (right)	.020 (right) .008 (left		(left)	(right)	.048 (right)		_		-	.015 (left)		.045 (right)			0	0									
Ministry Ministry	Pitch velocity.	T						(dn) E10.		_		_	_		(dn) 810.			.013 (up)	(dn) [TO:			_		_		\sim		_
High conditions Mind conditions Molecuty at Vertical The ground Hunsay Huntary Hun	Indicated angle of	attack, deg	8.1	7.6	(0 00 0 1 1/2	6.3	7.1	9.9	11.2	10.7).= W	13.1	,	6.9	10.2	15.0	10.5	12.5	13.5	15.7		ο. υ.	7.0.	9.0	w.c	5.7	4.7
Philot wight, Wind conditions Velocity at Vertical True ground Function True ground Function Velocity, Veloc	ray	Condition	Dry, hard	Dry, hard		Dry, hard	Dry, hard	Dry, hard				Dry, nard	Dry, hard]	Dry, hard	Dry, hard		Dry, hard	Dry, hard		Dry, hard Dry, hard	Dry, hard	Dry, rough	Dry, hard	Dry, hard	Dry, hard	Dry, nard Dry, rough	Dry, hard
Ianding Wind conditions Volocity at Verifical	Runa	heading, deg	350	350 Rosamond	Dry Lake ^c	5 5 8 8	180	180	180	180	180	96	180	á		980	180	180	180	180	88	180	92	381	981	180	962	Mud Lake landing ^c
Landing Wind conditions Velocity at the life Landing Velocity, Direction Velocity at touchdown, 13,984 9 Southwest 184 A 15,082 4 Southwest 188 A 14,798 9 Northess 188 A 14,583 Calm Northess 195 A 14,469 9 Northess 195 A 14,469 Calm Northess 195 A 14,480 Calm Northess 186 A 14,481 17 Northess 180 A 14,481 17 Northess 180 A 14,481 17 Northess 180 B 14,567 Calm Southess 180 B 14,567 Calm Southess 180 B 14,567 Calm Southess 180 C 14,654 9 Southess 175 C 14,654 9 Southess 191 E 14,583 Calm Southess 191 E 14,583 Calm Southess 192 E 14,590 Calm Southess 194 E 14,590 Calm Southess 194 E 14,590 Calm Southess 194 E 14,567 Calm Southess 194 E 14,567 Calm Southess 194 E 14,583 Calm Southess 194 E 14,583 Calm Southess 194 E 14,583 Calm Calm Calm Calm E 14,590 Calm Calm Calm E 14,593 Calm Calm Calm Calm E 14,593 Calm Calm Calm Calm Calm Calm Calm E 14,593 Calm Ca	True ground speed at	touchdown, knots	203	191	`	189 283	201	193	198	161	165	8, 5	182		171	201	175	196	171	180	179 202	178	900	181	175	1	186	251
Landing Wind conditions Velocity	Vertical	fps	0. ?. ***	7.7		o	20.	2.5	٦.	.0.	0.0	+ m	,4	(, w	2.3	5.0	2.8	2.5	5.0	4 ت تن	2.5	4.		2.3	2.2	0.4	3.9
A 13,984 9 Southwest A 13,984 9 Southwest A 15,082 4 Southwest A 15,082 4 Southwest A 14,798 9 Northest A 14,583 9 Northest A 14,419 9 Northest A 14,419 5 5 A 14,501 10 Northesst B 14,567 Calm Southwest B 14,674 9 Southwest B 14,654 9 Southest B 14,654 9 Southest B 14,654 9 Southest B 14,654 9 Southest B 14,656 Calm Southest B 14,650 Calm Southest B 14,650 Calm Southest B 14,650 Calm Southest B 14,660 Calm Southest B 14,560 Calm Southest B 14,561 Calm Southest B 14,562 Calm Southest B 14,563 Calm Southest B 14,563 Calm Southest B 14,563 Calm Southest B 14,560 Calm Calm Calm B Calm Calm Calm Calm Calm C		KIAS	184	180	0	<u> </u>	192	193	185	160	156) [6]	181		189	189	180	186	179	175	179	184	191	175	181	500	10.	256
A 13,984 13,984 13,984 14,165 15,183 16,518		Direction	Southwest	Northwest Northwest		Southwest	North-	northeast North-	northeast	Southeast	Northeast	100000000000000000000000000000000000000	North-	northeast	West-	southwest East	South-	Southwest	South-	southwest South	South		Southwest	South		Southwest		Southeast
Н	Wind cor	Velocity, knots	6	Calmb	-	d E	6	Calm	Calm	Calm	2.	CBTI	7 8		20 02	Calm	* 1	10	6	7	Calm 11	Calm	6.	90	Calm	18 to 26	Calm	.4
	Landing	TP.	13,984	14,165		15,062 4,45	14,619	14,394	14,583	14,469	91,41	\$ 6. 6. 6. 6. 7.	14,501	1 6	14,011	14,567	14,945	14,610	14,654	14,692	14,600 14,891	14,968	14,959	15,091	15,021	14,93	201,41	15,982
### ##################################	Pilot		Ą	4 4		∢ ⊲	4	Ą	4	¥	۷.	∢ <	∢ ∪		ရပ	щ	ບ	ф	Д	ຍ	ت (بر	ပ	EQ E	ā F4	[±4	F4 F	el Ed	闰
	Flight	number (a)	d2-1-3	2-2-6		2-4-11	2-6-13	2-7-15	9-8-3	2-9-18	2-10-21	22-11-2	2-13-26	7 -	2-14-20	2-16-31	2-17-33	2-18-34	2-19-35	2-20-36	2-21-37	2-23-43	11-to-0	2-56-16	2-27-47	2-28-48	2-29-50	2-31-52

See footnotes at end of table, page 20.

TABLE III. - PRETOUCHDOWN CONDITIONS - Concluded

(x-15-3)

2 Center-of-gravity goceleration, g 3 1.10 1.20 1.30 1.10 1.10 1.10 1.10 1.10 1.10 1.1	; Ę
Bar A A A A A A A A A A A A A A A A A A A	ı ri
######################################	27.0
Sideslip angle, deg 1.8 (right) 1.1 (right) 2.0 (right) 1.6 (right) 1.6 (right) 9.1 (left) 1.1 (left) 1.4 (right) 3.6 (right)	.1 (right)
	.01 (left)
Pitch velocity, radians/sec	\sim
Indicated angle of attack, deg 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.0 6.4 6.4 6.0 6.4 6.0 6.4 6.0 6.4 6.0 6.4 6.0 6.4 6.0 6.0 6.4 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	
Damp, hard Dry,	Dry, hard
Run	180
True ground speed at touchdown, knots 176 176 201 223 188 188	202
Vertical velocity, fps	2.0
Melocity at touchdown, KIAS KIAS KIAS KIAS KIAS KIAS KIAS KIAS	190
Wind conditions Welocity, Direction Calm Calm Calm North 17 West Calm 17 West Calm 18 Calm 19 Calm Calm Calm Calm Calm Calm Calm Calm	
Wind colority, Knots Knots Calm Calm 12 17 Calm Calm 12 17 Calm Calm Calm Calm Calm Calm Calm Calm	Celm
Landing veight, 1b, 303 14, 303 14, 492 14, 491 14, 491 14, 491 14, 491 14, 491 14, 491 14, 491	14,706
10 0000 000mmk kor	ηщ
Flight (a) 3-1-2 3-2-3 3-4-8 3-7-14 3-7-14 3-8-16 3-9-13 3-10-19 3-10-19 3-10-19 3-10-19 3-10-19 3-10-19 3-10-19	3-11-24

Whirst term indicates X-15 mirplane by number; second term indicates number of free flights for that mirplane; third term indicates number of mirplane X-15/B-52 missions for the mirplane.

 $^{^{\}rm b"Calm"}$ denotes variable from 0 to 3 knots.

CEmergency.

dInitial contact followed by rebound.

Figure 2.- Three-view drawing of the X-15 airplane. All dimensions in feet.

Figure 3.- Schematic drawing of the X-15 main landing gear.

Figure h.- Simplified block diagram showing components of stability augmentation system.

Figure 5.- X-15 landing sequence showing conditions leading to second main-gear reaction.

Figure 6.- Typical X-15 landing using wing flaps. Nose-gear touchdown at Δt_n = 1.35 sec (flight 1-30-51).

Figure 7.- Horizontal-stabilizer deflection as a function of SAS gain and pitch rate (trim δ_h = 0°).

Figure 8.- Aerodynamic load on horizontal stabilizer as a function of stabilizer position.

Figure 9.- X-15 landing in which horizontal-tail down loads were decreased by programing control inputs. Nose-gear touchdown at $\Delta t_n = 1.48$ sec (flight 3-12-22).

Figure 10.- X-15 landing in which SAS automatically disengaged dampers and pilot released control stick after main-gear touchdown.

Figure 11.- X-15 landing performed without using wing flaps. Nose-gear touchdown at Δt_n = 0.40 sec (flight 2-31-52).

Figure 12.- Variation of wing lift at maximum main-gear load with touchdown velocity, showing the effect of flaps.

Figure 13.- Comparison of maximum main-gear loads with tail-wing loads.